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Distributed systems are multi-processor inf ormation processing systems which do not rely on
the central shared memory for communication. This paper presents ideas and techniques in
modelling distributed systems and its application to Artificial Intelligence. In sectIon 2 and
3, we discuss a model of distributed systems and its specification and verification
techniques. We introduce a simple example of air line reservation systems in Section 4 and
illustrate our specification and verif ication techniques for this example In the subsequent
sections. Then we discuss our further work.
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1. Introducti on

Distributed systems are multi-processor information processing systems which do
not rely on the central shared memory for communication. The importance of distributed
systems has been growing with the advent of “computer networlu” of a wide spectrum:
Networks of geographically distributed computers at one end, and tightly coupled systems
built with a large number of inexpensive physical processors at the other end. Both kinds
of distributed systems are made available by the rapid progress in the technology of large
scale integrated circuits. Yet little has been done in the research on semantics and
programming methodologies for distributed information processing systems.

Our main research goal Is Co understand and describe the behavior of such
distributed systems in seeking the maximum benefit of employing multi-processor
computation schemata.

The contribution of such research to Artificial Intelligence Is manifold. We
advocate an approach to modelling intelligence in terms of cooperation and communication
between knowledge-based problem solving experts. In this approach, we present a coherent
methodology for the distribution of active knowledge as a knowledge representation theory.
Also this methodology provides flexible control structures which we believe are well suited
for organizing distributed active knowledge. Furthermore we hope to make technical
contributions to the central issues of problem solving such as parallel versus serial
processing, centralization versus decentralization of control and information storage, and

the “declarative-procedural” controvers y.
This paper presents ideas and techniques in modelling distributed systems and its

application to Artificial Intelligence. In section 2 and 3, we discuss a model of distributed
systems and Its specification and verification techniques. We Introduce a simple exa mple of
air line reservation systems in Section 4 and illustrate our specification and verification

F techniques for this example in the subsequent sections. Then we discuss our further work.
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2. A Model ~f i~j~j ribute~ SylsLtema

The actor model of computation(Greif&Hewitt75, Greifl5, Hewitt&Baker7l] has
been developed as a model of communicating parallel processes. The fundamental objects
in the model of computation are g~tors.. An actor is a potentially active piece of
knowledge (procedure) whkh Is activated when it is sent a message which is also an actor.
Actors interact by sending messages to other actors. More than one transmission of
messages may take place concurrently. Each actor decides how to respond to messages sent
to It. An actor is defined by its two parts, a ~~j~pt and a set of acquaintances . Its script
Is a description of how it should behave when it is sent a message. Its acquaintances are a
finite set of actors that it directly knows ~~gt. If an actor A knows about another actor
B, A can send a message to B directly. The concept of an event is fundamental in the
actor model of computation. An event is an j

~~~~~! 
of a message actor M at a target actor

T and is denoted by the expression CT .c— M). A computation is expressed as a p a r t t a t l y
ordered Set of events. We call this partial order the “PLQC.edeS ” ordering. Events which
are unordered In the computation can be urr ent. Thus the partial order of events
naturally generalizes the notion of serial computation (which is a sequence of events) to that
of parallel computation.

A collection of actors which communicate and cooperate with each other in a goal
oriented fashion can be implemented as a single actor . In essence actors are procedural
objects which may or may not have local storage. Some may behave like procedures and
some may behave like data structures. Modules In distributed systems are modelled by
actors and systems of actors. In this regard, IC chips can be viewed as actors.

Knowledge and Intelligence can be embedded as actors in a modular and
distributed fashion. For example, franies[Minskyl5, Kulpersl5).
u ni ts(Bobrow&Wlnograd76l, bet ng.s(Lenat75), stereo types(Hewitt75] e.t.c. which
represent modular knowledge with pro cedural attachments are modelled and
Implemented as actors. In the context of electronic mail systems and business information
systems, objects such as forms, documents, customers, mail collecting stations, and mail
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distributing stations are easily modelled and implemented as actors.
Messages which are sent to target actors usually contain continuation actors to

indicate where the result of the receipt of the message should be sent. By virtue of
continuations in messages, the message-passing in the actor model of computation realizes a
universal and yet flexible control structure without using implicit mechanisms such as push
down stacks. Various forms of control structures such as go-to’s, procedure calls, and
coroutines can be viewed as particular patterns of message passing [Hewittl6].

This model of computation has been implemented as a programming language
PLASMA[Hewitt76]. The script of an actor can be written as a PLASMA program. We
believe that PLASMA will provide a basis for p~ g~ p~rning larjguag~ f~ distribut~4
system~. In section 5. an example of PLASMA programs is given as a script of a
flight-data actor In the model of a simple air line reservation system.

3. TechnIques f~~ Sp Lcation and Verificati on

In designing and implementing a distributed (message-passing) system, it is
desirable to have a precise specification of the intended behavior of the distributed system.
Also we need sound techniques for demonstrating that implementations of the system meet
its specification. Below we give some of the central Ideas of our specification and
verification techniques based on the model introduced in the previous section. The more!
detailed work will be found in fYonezawa77).

In specifying the behavior of a distributed system, it is not only practically
Infeasible, but also irrelevant to use gi2k~i states of the entire system or the global time axis
which governs the uniform time reference throughout the system. We are concerned with
states of modular components of a distributed system which interact with each other by
sending messages. Thus we are interested In the states of actors participating In an event at
the instance at which the message is received.

In our specification language, conceptjiai. r i . .e~n~at ions are used to express

L _ _ _ __ _ _ _ _ _ _ _
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local states of actors (modules). Conceptual representations were originally developed to

specify the behavior of actors which behave like data structures(Yonezawa&Hewitt l6]. We

have found them very useful to express states of modules in distributed systems at varying

levels of abstraction and also from various view points. The basic motivation of

conceptual representations is to aid in providing a specification language which serves as a

good Interface between programmers and the computer and also between users and

implementors. Conceptual representations are intuitive clear and easy to understand, yet

their rigorous interpretations are provided. Instead of going into details of syntactic

constructs of conceptual representations, we give examples. Below !‘~.xp> is the unpack

operation on (.xp) which means writing out all elements denoted by <.xp> individually.

(CELL A) ;a cell conta inina A as its contents.
(QUEUE A B C) ~a queue wit h elements A B C.
(NODE (car: A) (cdr: B)) ;a LISP node containing A and B.
(CUSTOMER (letters: (!m})(,—of—atampa-needed: n))

;a customer vis i ting a post of f ire
;who carri es letters !m and wants n stamps.

(POST-OFFICE (customer (fcj ) (collector: (!cl)))
;a post office which contains customers !c and mail collectors Id.

It should be noted that a conceptual representation does not represent the Identity of an
actor. It only provides a description of the state of an actor. Thus to state that an actor Q

Is in the state expressed by a conceptual representation (QUEUE A B C), an assertion of the

following form:

(Q ia-a (QUEUE A B C))

Is used. Some examples of specification using conceptual representation are given in the
later sections.

Symbolic evaluation is a process which interprets a module on abstract data to
demonstrate that the module satisfies its specification. Symbolic evaluation differs from
ordinary evaluation in that I) the only properties of input that can be used are the ones

-~ V.~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~
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specified in the pre-requisites, and 2) if the symbolic evaluation of a module M encounters
an Invocation of some module N, the specification of N Is used to continue the symbolic
evaluation. The implementation of N is not used. The technique of symbolic evaluation
has been studied by a number of reseachers , for example (Boyer&Moore75,
Burstall&Darlington75, Hewitt&Smith75, Vonezawal5, K 1ng76].

Our method for symbolic evaluation of distributed systems is an extention of the
one developed for symbolic evaluation of programs written in SIMULA-like
languages(Yonezawa&Hewitt76). One of the main techinques we employ in symbolic
evaluation is the introduction of a notion of L uitlons(McCarthy&Hayes69]. A situation
Is the local state of an actor system at a give moment. The precise definition of locality in
the actor model of computation Is found in [I-lewitt&Baker77). By relativizing states of
modules with .s i t ua t ional  tags which denote situations, relations and assertions about
states of modules in different situations can be expressed. Explicit uses of situational tags
seem to be very powerful In symbolic evaluation of distributed systems. A simple example
is given in SectIon 7.

Another technique we employ in symbolic evaluation is the use of qct~r
irs4uction to prove properties holding in a computation. Actor Induction is a
computational induction based on the precedes ordering (cf. Section 2) among events. It
can be stated intuitivel y as follows:

~For each event E in a computation C, if p r econdtt tons for E imply

PLQC.O~f ltIO!.S for each event E’ which is immediate)y caused by E, then
the computation C is carried out according to the overall specIfications.~

The precedes ordering has two kinds of suborderings, I) the activation ordering. “acelvates ,

which Is the causal relation among events, and 2) the arrival ordering, ~arr ives-hefore ,

which ex presses ordering among events which have the same target actor. Thus there are

two kinds of actor induction according to these suborderings. An example of the induction

based on the arrival ordering is used In Section 7.
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4. Mod elling aii Link B ~~atI~n System
— A specification of an Air Line Reservation System --

As an illustrative example of distributed systems, let us consider a very simple air
line reservation system. Suppose we have just one flight which has a non-negative
number of seats. A number of travel agencies (parallel processes) independently try to
reserve or cancel seats for this flight, possibly concurrently. We model an air line
reservation system as a flight actor F which behaves as follows. The flight actor F accepts
two kinds of message, (reserve-a-seas:) and (ca,icnl-a-sea i:). When F receives
(reserve—a-seal:), if the number of free seats is zero, a message (no-more-seats:) is. returned.
Otherwise a message (ok-its-reserved:) is returned and the number of free seats is decreased
by one. When F receives (cancel-a-seas:), if the number of free seats is less than the
maximum number of seats of the flight, a message (ok-its-can celled:) is returned and the
number of free seats is increased by one, otherwise (too-many-cancels:) is returned.
Furthermore requests by (reserve-a-seas:) and (cancel-a-seat:) are served on a
fIrst-come-first-served base.

To write a formal specification of the air line reservation system, we need to describe the
states of the flight actor. For this purpose, we use the following conceptual representation

(F LI Gh T (seats—free: < in> ) (size: <s >))

which describes the state of a flight actor. The number of free seats is <m) and s> is the
size of the flight In terms of the total number of seats. The formal specification of the air
line reservation system using this conceptual representation Is depicted In Figure I below.

,.—‘. ~~~~~~~~
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(event: (cr.at.—fiight < S)
(pre-cond: ( S > 0) )
(re turn: F~ >
(po st—cond: (F is-a (FLI C lIT (seats—free : S)  (size: S)) ) > >

(event: (F <= f r eserve ’-a-scat :))
(case-I:

<pre-cond: (F is-a (FLI Gh T (seats-free: 0) (size: S)) ) >
(next -cond: (F is-a (FLI CII 7’ (seats-free: 0) (size: S))) >
(re tu rn: (no—more-sects:) >)

(case-2:
<pre-cond:

(F is-a (F LIG II T (seats-fr ee: N)  (s ize: S ) ) )
(N> 0) >

<next -cond: (F is-a (FLI CIf l ’ (seats-free: N —  1) (size: 5))) >
<r eturn: (oh—its-reserved:) ) ) )

(even t: (F (= (cancel-a-seat:))
(case-i:

<pre —cond : (F is-a (FLI G h T (seats-free: S )  (size: 5))) >
(nezi-cond: (F is-a (F LIG h T (seats-free: 5) (size: 5))) >
<retur n: (too-many-canccls: ) >)

(case-2:
<prc.-cond:

(F is-a (FLIG h T (seats-free: N)  (size: S i) )
(N S) >

<next-cond: (F is-a (FLIG h T (seats-free: N + 1) (size: 5))) >
(return: (ok-it s—cancelled:) > )>

<fo r-events: E, E’
where E = (F <—~ N), E’ = (F (: N’)

<pre-cond:
(F is-a (F LIGII 7 ’ (seats-free: ...) (size:.. ) ) )
(E arrives-before E’)>

(caused -events: rcp ly-fo r[ EJ , reply -for[E ’]>
<p oa t—cond: (rep ly —for[ E) pr ecedes repl y—fo r[ E ’] ) >>

Figure 1 A Specification of the Air Line Reservation System
(A Specification for the Flight Actor)

The first <event:...>-clause states that a new flight actor F is created by an event
where the create-flight actor receives a positive number S. <actor * means that (actor> is
newly created. The second <event:... -clause has two cases according to the number of free
seats at the moment when the flight actor F receives (reserve-a-seat:). When the number of
free seats is zero (Case-i), the state of F does not change. When It Is positive (Case—2), the
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number of free seats decreases by one as stated by the assertion in the <next-cond:...)-clause.

The notation in Figure 1:

(event: (1 ( N)
<pre-cond: ... >
(nexi—cond: ... (assertion> ... >
<return: (actor) > >

means that when an event (1 <~ N) takes place, If the preconditions are satisfied, (ass.rtion>s
In the nex e-cond:..>clause hold immediately after the event until the next message arrives
at T. <actor> In the <return:...>-clause is returned as the result of the event. (next -rond:...>
differs from (pose-eond:... In that assertions In <poss-cond:...>-clause hold at the time (actor)
is returned, whereas assertions in <next-cond:...>-clause hold at the time the next message
arrives. The next message may arrive at I before or after a reply for the previous message
Is returned. The third (evene:...-clause is for the cancelling event, which is interpreted in a
similar way. The <for—events: ... -clause states that requests (messages) received by the flight
actor are served on the first-come-first-served base. Namely, the replying events for events
£ and E’ take place in the same order as E and E’.

5. Impleme nting ti~~ 4!i~ Ltn~ Res~~~zLtion. System

Our strategy to implement the air line reservation system (specified in the previous
section) Is as follows. First, we implement a flight-data actor which satisfies the
specification in Figure I on the condition that it is always activated S1,. i...a 11g. Then we

put some protecting (or scheduling) mechanism on the flight-data actor so that the protected
flight-data actor may satisf y the specification of the air line reservation system.

In Figure 2 below we give an implementation of the flight-data actor in PLASM A.

_ __ -.~~~~~~~~~~~~~ 
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(create—flight—data =,) a ;create-flight—data receives a size s of fli ght.(let (siz. initially s) ;a var iable siz. is set to s.(seats—fr.. initially s) ;a var iable seats—fr.. is set to •.Ihen ;thc following cases—clause is
;returned as an actor which behaves as a fligh t-data.(cases

(a> (reserve-a-see: :) ;when a (reserve—...) message is received ,(rules seats—fr..
(~> 0 ;if seats—fr.. is zero,(no-more-sea ts:)) ;(no-...) message is return ed.(a> elSe ;oiherwj se(seats—free (seals-free — 1)) ;seats—free is decreased by one.(ok-its-reserved:)))) ; (ok-...) message is r eturned.(a> (cancel-a-se a : :) ;when a (cancel-...) message is received ,(rules seats—free
(~> size ;if seats—free is equal to size,(too -man y-cancels :)) ;(too-...) is return ed,(a > else :otherwise(seats-free -, (seats-free + 1)) ;seats-free is increased by one.(ok-its-cance lled:)))) ) )  ; (ok—...) is returned.

Figur.
It is fairly straightforward to write a specification for this flight-data ED by using a
conceptual representation:

( FL bGIb T-D/J T/)  (seats-free: <in> ) (size: <s>))

which describes the state of a flight-data actor. The number of free seats is (m> and <s> is
the size of the flight In terms of the number of seats. Note that if ED were sent more than
one message concurrently, anomalous results would be caused. For example, in the
implementation in Figure 2, If (reserve-a- sea ::) and (cancel-a-sect:) messages are sent
concurrently, (no-more-seat s:) message might be returned even if there are vacant seats.
Therefore in order to model the air line reservation system by using the above
implementation of a flight-data actor, the way it is used must be restricted so that
interference between different activations does not take place. As suggested in the
beginning of this section, the restriction we impose is that ED must be us.c4 serially In the
sense that FD is not allowed to receive a message until the activation by the previous
message is completed. Now the flight-data actor can be used to implement the air line

~
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reservation system under this restriction. We give a formal specification for the

flight-data actor In Figure 3 below.

<event: (cr.at.—flight—data <= S)
<pre-cond: (S > 0)>
<return: FD*>
(pos t—cond: (ED is-a (FLI GIIT-D/I TIJ (seats-free: S)  (size: S))) > >

<event: (FO < (reserve-a-seat:))
(case-I:

<pre-cond:
(ED is—used—serially)
(ED is-a (FLIGII T-D/lT/)  (seats-free: 0) (size: 5)))>

<return: (no-more—seass:) >
<post-cond: (ED Is-a (F LI GII T—DIJ TA (sea ts-free : 0) (size: S))) ))

(case-2:
<pre-cond:
(ED is-used-serially)
(ED is—a (FLIGIII’-D/JT/J (seats-free: N) (size: 5)))
(N > 0) >

<return: (ok—its—reserved:) >
<post-cond: (ED is-a (FLIGIIT—D/JTA (seats-free: N — 1) (size: S) ) )  >) >

<event: (ED < (cancel-a-seat:))
(case-I:

<pre-cond:
(FO is-used-scrially)
(ED is—a (F LICII T-IJ/J7’I J (seats-free: 5) (size: S) ) )  >

<return: (too-many—cancels :) >
<post-cond: (ED is-a (FLI GH T-DAT/I (seats-fr ee: 5) (size: 5)) ) >)

(case-2:
<pre-cond:
(FO is-used-serially)
(ED is-a (FLICIIT-D/1T/J (seats-free: N) (size: S)))
(N < 5)>

<return: (ok-its—cancel led:) >
<poa t—cond: (FD is—a (FLIGh T—DAT/I (seats—free: N + 1) (size: S))) >)>

Figure 3 A Specification for the Flight—data Actor

In this specification, the restriction of the t~ri~i ij ~ is expressed in the following notation,

(ED is-used-serIally)

stated as a precondition for events. In contrast to the specification above, there are no such

~~A



- 12 -
)

preconditions in the specification of the air line reservation system (the flight actor) in
Figure I. Thus the reservation system Is specified to work properly even If it is accessed
concurrently. Also notice that the specification above has no statements about scheduling
such as the first-come-first-served scheduling which is stated as <for-eventE...)-clause In the
specification of the air line reservation system.

6, One-at -a-time

In this section, we consider how the ~~~ ~~ of a flight-data actor Is realized In
environments where communicating parallel processes try to use the flight-data actor. Our

approach Is to surround a flight-data actor ED with some mechanism which arbitrates
parallel requests to the flight-data actor ED and passes these requests to FD In the serial
fashion. We call this protection mechanism a one-at-a-time guardian. A on.-at-a-tim.

guardian can be easily implemented by a sertalizer[Atkinson&Hewiu77) which Is a

general synchronization mechanism in the actor model of computation.
Now we give a specification for one-at-a-time guardians. A on.-at-a-tim.

guardian is created in an event where an actor one-at-a-tim. receives a resource (a
flight-data actor in this case). The one-at-a-tim. guardian thereby created will then contain

the received resource. The following <event:.>-clause expresses this.

<event: (one-at-rtim. <= RESOURCE)
<return: Q~~)
<poat-cond: (G is-a (ONE-/i T-fl-TIF.I E RESOURCE)))>

where (ONE-/I T-/ I -TIME <resource>) Is the conceptual representation for a one-at—a—tim.

guardian which contains <resource>. Nex t, we specify how a one-at-a-tim. guardian G

behaves. In general a request to the guardian C, which is an arrival of a message M at G,

eventually causes an invocation (or use) of RESOURCE. The invocation of RESOURCE begins
with an access to RESOURCE which is an arrival of the same message M at RESOURCE and

ends with a reply for the access which is a return of some result of the invocation. (See
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the FIgure 4 below .)
request G

acceSs RESOURCE

<
rePly 

___________

Figur. 4

Our aim of using a one-at-a-time guardian G is to control invocations of RESOURCE
by parallel requests so that only one invocation of RESOURCE takes place at a time. In
order to do so, if we have two concurrent requests, the end of the invocation by one request
should always precede the beginning of the invocation of the other request. This intuitive
description of the desired behavior of a one-at-a-time guardian can be described in terms
of the order of the events request, access and reply Introduced above. Suppose we
have two requests, REQUEST, which is an arrival of a message M 1 at C, and REQUEST1 which
Is an arrival of a message at C. Then REQUESTK causes ACCESSk which is an arrival of
M

k 
at RESOURCE resulting In reply-for~ACCESS~J. in this order (where k stands for either I

or j). To ensur e the one-at-a-time property of invocations of a resource, the following
order ing relation must be satisfied:

•tf REQUEST1 precedes REQUESTJ,
then reply-for(ACCE$51] must precede ACCESSJ~.

Since REQUESTk always precedes ACCESSk and ACCESSk always precedes
repI~-for[ACCES$~], the desired ordering relation can be expressed by the following

diagram.
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REQUEST -> REQUESTj

AcCESS1
I I
+

r ep ly-f or[ACCES$ ,] --—-> ACCESS1

repl y-f or (ACCES S1J

This behavior of the one-at-a-tim. guardian Is formally described as a
specification in Figure 5 below. Note that RESOURCE must be guaranteed to reply.

<evens : (one-at-a-tim. = RESOURCE)
<return: G* >
<po ss-cond: (C ia-a (ONE-/IT-/I-TIME RESOURCE)) >>

<for-events: REQUEST1, REQUESTJwhere REQUEST1 (C < M,), REQUESTJ = (C < M3)<pre-cond:
(C is-a (ONE-/I T-/I -TIME RESOURCE))
(RESOURCE is-guaranteed-to-reply)
(REQUEST

~ precedes REQUEST J) >

<caused-events: ACCESS1, ACCE$SJI reply-for[A~CESS~], reply-for[AcCESS1)wlu’ro ACCESS1 (RESOURCE ( M1), ACCESS1 = (RESOURCE = M1))(po st-coed:
(REQUEST, precedes ACCESS~)(REQUEST1 precedes ACCESSJ)(ACCESS, preced es rep ly-for(ACCE$S,])
(ACCESSJ precedes rep ly-f or (ACCESS 1])(r ep l y—fo r(ACCESS,] prece des ACCESS1)>>

Figure 5 A Specification for the One-at—a—Time Actor

7. Syi~bolio Evaluation qf. t~~~ 44~ Li~ e R~ SOrVMiLOJ1 System

Our Implementation of the air line reservation system Is expressed by the followin g
simple code:

(create—flight us) a (one—at—a—tim . (cr.ate—f light—d ata a))
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(Equivalently, (cr.at.—flight =5) a (one—at—a—tim . <= (create—flight—data <= a)). )

In this section we demonstrate that the above code meets the specification of the
air line reservation system given in Figure 1. Our method for the demonstration Is symbolic
evaluation.

The symbolic evaluation of the code

(one—at—a—time (cr.at.—f light—dat a a))

reveals the followin g facts:
I) an actor FO is created by (create—flight—data <= a),
2) C is created by (one-at-a-time <= FO) and returned, and
3) the two actors satisfy the following assertions immediately after the creation of C

(FO is-a (FLIGIIT-bA7’/I (~ aes-free: ,) (size: a)))

(C ia-a (ONE-AT-fl-TIME FD)).

• /

This means that the flight actor Is created as a one-at-a-tim. guardian G which contains a
flight-data actor FD with a free seats. In what follows, we will establish that the
one—at-a—tim. guardian C satisfies the specification for the flight actor in Figure 1.

The <event:..)-clause in the specification for the flight actor In Figure I specifies
the behavi or of C in terms of the conceptual representation

(C Is-a (FLIGHT (seats-free:...)(sjxe:...)))

(Notice that F In the specification for the flight actor is instantiated as C.) On the other
hand, C is implemented as a one-at-a-tim. guardian which contains the flight-data actor F~D.

H 
_  _ _  

.

IL _ _ _  _ _ _ _
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This means that we have ~~ yJ~~s of C and correspondingly two different conceptual

representations are used to describe the state of C. In order to show that the

implementation satisfies the specification, we need to establish some relation between the
state of G expressed by

(FLIGh T (seats—free:...) (size:...))

and the state of FO ex presssed by

(FLIGHT-DATA (seais-froe:...)(size:...D.

The relation we need is:

if C satisfies the assertion
(C is—a (FLIC lIT (seals—free: n) (size: a)))

In a situation where C receives a message N, then FD always satisfies the
assertion

(FO ia—a (FLICIIT-DAT/J (seats-free: n) (size: a)))
in the situation where FD receives the same message N (through the
one-at-a-tim. guardian), and ii~ ~~~~

This relation is expressed formally as follows:

<imp lement at ion-commentary
(C is-a (FLIG h T (seats-free: n) (size: a)))  in S

where S = Si t[(C < N)]
If-and-onl y -if

(FO is-a (FLI CII T-DII T/1 (seats-free: n) (size: a)))  in S’
where S’ = Sit ((FD < N)] >.

Sit[E] expresses the situation where an event E takes place. The above npi~~ &ta~ioii
convnentury formally describes the basic idea of the Implementation. It can be viewed as

the counterpart of an “Invariant” In parallel process environments, which was first

Introduced by (Hoare 1972] to show correctness of implementation of data structures which

are supposed to be used serially.

It should be noted that the fIrst-come-first-served based scheduling by the
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guardian C guarantees the above relation. If the guardian does more complicated
scheduling, the relatIon needed for the demonstration may not be so simple. For more
general scheduling cases, see [Yonezawal7].

1. Establish~ g ~~ ent: (.~ r~~g~p-a-sca,:J~~>-clause

There are two cases to be considered. We only consider the (C.se-2...)-clause.

Case-2: (C ia-a (FLIGHT (seats-free: n) (size: a))), (n 0)

The guardian C receives a (reserve-a-seat:) message M. To know the result of this
event , the specification for one-at-a-lime In Figure 5 is used. Since the flight-data actor
FD Is guaranteed to reply, the specification for one-at-a-tim e guarantees that the
(reserve-a-seal:) message M is received by FO. To know the state of the flight-data actor
FO at the time of the arrival of M, the above Implementation commentary Is used. Since
the state of C at the time of the arrival of M at C Is described as:

(C is-a (FLIGHT (seats-free: n) (size: a))),

the state of FO at the arrival of N at FO Is described as

(FO ia—a (FLI GIIT-Ij /ITjj  (seats-fre e: n) (size: a))) .

Then the (Caae-2_,)-clause in the evene:...-ciause of the specification for flight-data actors
In Figure 3 Is referred to. Since the precondition that FD must be used serially Is satisfied
(because FD is contained Inside the one-at-a-tIme C), the (Ceae-2...)-clause of the
specification for flight-data actors tells us that

(I) (ok—IU—reaer vej :) is returned , and
(2) the state of FO is now expressed as:

(FD ia-a (FLIGHT-DAT/I (scat-free: n - 1) (size: a))) .

~~~~ ~~~~~~~~~~~~~~~~~~~~~~
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(I) Is what the <rettu’n:...)-clause In the specification for the flight In Figure I requIres. Since
the state of FD expressed as

(FD is-a (FLICIIT-DAT/I (soot-free: n — 1) (size: a)))

• remains unchanged until the next message M’ arrives at FO, by using the implementation
commentary In the other direction this time, we know that the state of C remains unchanged
as

(C is-a (FLIGh T (seats-free: n — 1) (sin e: a)))

until the message M’ arrives at C. This Is what (ncxt-eond:. ..) clause in the specification
for the flight actor in Figure I requires. Thus Case-2 is shown. Case-I may be shown
analogously. It should be noted that induction on the order of arrival of messages is used.

IL Establishing ~~ (event: (
~ ~ (~~~el-a-zeas:))...>-clause

The demonstration for this event is analogous to that of I.

Ilk Establishing th~ <for-events:...)-dause

The event where the flight actor C receives a message means that the one-at—a—tim.
guard Ian receives the same message. Suppose that M and M’ arrive at C in this order.
The specification for the one-at-a-time guardian specifies that M’ is not received by FD
until the reply from FD for M Is completed. Therefore the reply to M’ always takes place
after the reply to M. This is what the specification requires.

IL Establis~jng th~ Confinement o~ tIi~ flight-d~ta ac~ t !P

The discussion In I, II and III above assumes that no one can access the flight-data
actor FD except through the guardian C. This assumption always holds because the
flIght-data actor FD created by (cr.ate-f light-data (a a) is never released outside the 

-~~~~ —-- —- -- -~~-— - ~~ • 0 ~~~~~~~~~~
__

~~ - •~~~ .---~~~~~~-~~~~~- . —~~~~~~~~~~ • 00 ~~~~ -
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on.—at—a—tim. actor.

8. Further Work

We are currently working to establish a coherent methodology for demonstrating
that a distributed message-passing system will meet its specifications. By using the
technique of symbolic evaluation, we would like to analyze the relationships and
dependencies between modules in a distributed system. This approach will be instrumental
In assistIng us with the evolutionary development of distributed systems.

We are also working on the application of procedural objects (such as actors) to the
area of business automation. In order to replace paper forms and paper documents, we use
“actlv? forms and “active” documents which are displayed as images on the TV termina l
accompanied by procedures. Active forms and documents are sent from one site to another
whereby clerks are requested to provide necessary information with the guidance of the
accompanying procedures. Such procedures may also check the consistency of filled items
and point out errors and inconsistencies to persons who are processing forms. Thus active
forms and documents accompanied by procedures enormously increase the flexibility and
security of message and document systems. Furthermore we propose to use the “language”
of forms and documents as the basis for the user to communicate with the information
processing system. One of the ultimate objectives in our research is to develop a
methodology for the construction of real-time distributed systems which can be efficiently
and effectively used by non-programmers.
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